Constraint-Based Pattern Discovery

نویسنده

  • Francesco Bonchi
چکیده

Devising fast and scalable algorithms, able to crunch huge amount of data, was for many years one of the main goals of data mining research. But then we realized that this was not enough. It does not matter how efficient such algorithms can be, the results we obtain are often of limited use in practice. Typically, the knowledge we seek is in a small pool of local patterns hidden within an ocean of irrelevant patterns generated from a sea of data. Therefore, it is the volume of the results itself that creates a second order mining problem for the human expert. This is, typically, the case of association rules and frequent itemset mining (Agrawal & Srikant, 1994), to which, during the last decade a lot of researchers have dedicated their (mainly algorithmic) investigations. The computational problem is that of efficiently mining from a database of transactions, those itemsets which satisfy a user-defined constraint of minimum frequency. Recently the research community has turned its attention to more complex kinds of frequent patterns extracted from more structured data: sequences, trees, and graphs. All these different kinds of pattern have different peculiarities and application fields, but they all share the same computational aspects: a usually very large input, an exponential search space, and a too large solution set. This situation—too many data yielding too many patterns—is harmful for two reasons. First, performance degrades: mining generally becomes inefficient or, often, simply unfeasible. Second, the identification of the fragments of interesting knowledge, blurred within a huge quantity of mostly useless patterns, is difficult. The paradigm of constraintbased pattern mining was introduced as a solution to both these problems. In such paradigm, it is the user who specifies to the system what is interesting for the current application: constraints are a tool to drive the mining process towards potentially interesting patterns, moreover they can be pushed deep inside the mining algorithm in order to fight the exponential search space curse, and to achieve better performance (Srikant et al., 1997; Ng et al. 1998; Han et al., 1999; Grahne et al., 2000).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft constraint based pattern mining

The paradigm of pattern discovery based on constraints was introduced with the aim of providing to the user a tool to drive the discovery process towards potentially interesting patterns, with the positive side effect of achieving a more efficient computation. So far the research on this paradigm has mainly focused on the latter aspect: the development of efficient algorithms for the evaluation...

متن کامل

The Discovery of Frequent Patterns with Logic and Constraint Programming

The basic goal of data mining is to discover patterns occurring in the databases, such as associations, classification models, sequential patterns, and so on. In this paper we focus on the problem of frequent pattern discovery, which is the process of searching for patterns such as sets of features or items that appear in data frequently. Such frequent patterns can reveal associations, correlat...

متن کامل

Soft Threshold Constraints for Pattern Mining

Constraint-based pattern discovery is at the core of numerous data mining tasks. Patterns are extracted with respect to a given set of constraints (frequency, closedness, size, etc). In practice, many constraints require threshold values whose choice is often arbitrary. This difficulty is even harder when several thresholds are required and have to be combined. Moreover, patterns barely missing...

متن کامل

Pattern-growth based frequent serial episode discovery

Article history: Received 28 October 2011 Received in revised form 23 June 2013 Accepted 25 June 2013 Available online 13 July 2013 Frequent episode discovery is a popular framework for pattern discovery from sequential data. It has found many applications in domains like alarmmanagement in telecommunication networks, fault analysis in the manufacturing plants, predicting user behavior in web c...

متن کامل

A constraint{based system for protein motif{searching, pattern discovery and structure comparison

We describe the design and testing of a constraint{based system for searching protein databases, pattern discovery and protein structure comparison. The approach is based on the TOPS topological representation of protein structure, using the formal version of the TOPS language we have made, and incorporates constraints over nite domains. Searching is achieved using an eecient constraint{based a...

متن کامل

A constraint-based querying system for exploratory pattern discovery

In this article we present ConQueSt, a constraint based querying system able to support the intrinsically exploratory (i.e., human-guided, interactive, iterative) nature of pattern discovery. Following the inductive database vision, our framework provides users with an expressive constraint based query language, which allows the discovery process to be effectively driven toward potentially inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009